日日躁夜夜躁狠狠躁超碰97,无码国内精品久久综合88 ,热re99久久精品国99热,国产萌白酱喷水视频在线播放

歡迎訪問深圳市中小企業(yè)公共服務(wù)平臺電子信息窗口

寬帶隙之戰(zhàn)才剛剛開始,SiC和GaN誰更有優(yōu)勢?

2023-03-28 來源:半導(dǎo)體行業(yè)觀察
2066

關(guān)鍵詞: 半導(dǎo)體 LED 二極管

從2001年左右開始,化合物半導(dǎo)體氮化鎵引發(fā)了一場照明革命,從某些方面來看,這是人類歷史上最快的技術(shù)變革。根據(jù)國際能源署的一項研究,在短短二十年內(nèi),基于氮化鎵的發(fā)光二極管在全球照明市場中的份額已從零增長到超過50%。研究公司 Mordor Intelligence 最近預(yù)測,在全球范圍內(nèi),LED 照明將在未來七年內(nèi)將照明用電量減少30%至40%。根據(jù)聯(lián)合國環(huán)境規(guī)劃署的數(shù)據(jù) ,在全球范圍內(nèi),照明約占用電量的20%和二氧化碳排放量的6% 。


這場革命遠未結(jié)束。確實,它即將躍升至更高的層次。改變了照明行業(yè)的半導(dǎo)體技術(shù)氮化鎵 (GaN) 也是電力電子革命的一部分,這場革命正在蓄勢待發(fā)。因為化合物半導(dǎo)體中的一種——碳化硅 (SiC)——已經(jīng)開始在巨大而重要的電力電子領(lǐng)域取代硅基電子產(chǎn)品。

GaN和SiC器件比它們正在替代的硅元件性能更好、效率更高。全世界有數(shù)以億計的此類設(shè)備,其中許多每天運行數(shù)小時,因此節(jié)省的能源將是巨大的。與GaN LED取代白熾燈和其他傳統(tǒng)照明相比,GaN和SiC電力電子產(chǎn)品的興起最終將對地球氣候產(chǎn)生更大的積極影響。

幾乎所有必須將交流電轉(zhuǎn)換為直流電或?qū)⒅绷麟娹D(zhuǎn)換為直流電的地方,浪費的功率都會減少。這種轉(zhuǎn)換發(fā)生在手機或筆記本電腦的壁式充電器、為電動汽車供電的更大的充電器和逆變器以及其他地方。隨著其他硅據(jù)點也落入新半導(dǎo)體,將會有類似的節(jié)省。無線基站放大器是不斷增長的應(yīng)用之一,這些新興半導(dǎo)體在這些應(yīng)用中顯然具有優(yōu)勢。在減緩氣候變化的努力中,消除功耗浪費是唾手可得的成果,而這些半導(dǎo)體正是我們收獲它的方式。

這是技術(shù)史上常見模式的新實例:兩項相互競爭的創(chuàng)新同時取得成果。這一切將如何擺脫?SiC將在哪些應(yīng)用領(lǐng)域占據(jù)主導(dǎo)地位,而GaN將在哪些領(lǐng)域占據(jù)主導(dǎo)地位?認真審視這兩種半導(dǎo)體的相對優(yōu)勢可以為我們提供一些可靠的線索。




寬禁帶半導(dǎo)體

化合物半導(dǎo)體被稱為寬禁帶(WBG)器件。若不評介晶格結(jié)構(gòu)、能級和其他令人頭疼的半導(dǎo)體物理學,我們只說WBG的定義是一個試圖描述電流(電子)如何在化合物半導(dǎo)體中流動的模型。

WBG化合物半導(dǎo)體具有較高的電子遷移率和較高的帶隙能量,轉(zhuǎn)化為優(yōu)于硅的特性。由WBG化合物半導(dǎo)體制成的晶體管具有更高的擊穿電壓和對高溫的耐受性。這些器件在高壓和高功率應(yīng)用中比硅更有優(yōu)勢。

與硅相比,WBG晶體管的開關(guān)速度也更快,可在更高的頻率下工作。更低的“導(dǎo)通”電阻意味著它們耗散的功率更小,從而提升能效。這種獨特的特性組合使這些器件對汽車應(yīng)用中一些最嚴苛要求的電路具有吸引力,特別是混合動力和電動車。

當然,SiC和GaN也有各自與眾不同的特性,主要可分為以下兩點:


性能對比

碳化硅和氮化鎵半導(dǎo)體通常也被稱為化合物半導(dǎo)體,因為他們是由選自周期表中的多個元素組成的。下圖比較了Si、SiC和GaN材料的性能,這些材料的屬性對電子器件的基本性能特點產(chǎn)生重大影響。

對于射頻和開關(guān)電源設(shè)備而言,顯然SiC和GaN兩種材料的性能都優(yōu)于單質(zhì)硅的,他們的高臨界場允許這些器件能在更高的電壓和更低的漏電流中操作。高電子遷移率和電子飽和速度允許更高的工作頻率。然而SiC電子遷移率高于Si,GaN的電子遷移率又高于SiC,這意味著氮化鎵應(yīng)該最終成為極高頻率的最佳設(shè)備材料。

另外,高導(dǎo)熱系數(shù)意味著材料在更有效地傳導(dǎo)熱量方面占優(yōu)勢。SiC比GaN和Si具有更高的熱導(dǎo)率,意味著SiC器件比GaN或Si從理論上可以在更高的功率密度下操作。當高功率是一個關(guān)鍵的理想設(shè)備特點時,高導(dǎo)熱系數(shù)結(jié)合寬帶隙、高臨界場的SiC半導(dǎo)體具有一定優(yōu)勢。GaN相對較差的導(dǎo)熱性,使系統(tǒng)設(shè)計人員處理氮化鎵器件的熱量管理面臨一個挑戰(zhàn)。


應(yīng)用對比

GaN和SiC在材料性能上各有優(yōu)劣,因此在應(yīng)用領(lǐng)域上各有側(cè)重和互補。

GaN:目前主要用于射頻器件、電力電子功率器件以及光電器件。GaN的商業(yè)化應(yīng)用始于LED照明和激光器,其更多是基于GaN的直接帶隙特性和光譜特性,相關(guān)產(chǎn)業(yè)已經(jīng)發(fā)展的非常成熟。射頻器件和功率器件是發(fā)揮GaN寬禁帶半導(dǎo)體特性的主要應(yīng)用領(lǐng)域。由于5G基站會用到多發(fā)多收天線陣列方案,GaN射頻器件對于整個天線系統(tǒng)的功耗和尺寸都有巨大的改進,因此5G通信將是GaN射頻器件市場的主要增長驅(qū)動因素。

SiC:SiC能大大降低功率轉(zhuǎn)換中的開關(guān)損耗,因此具有更好的能源轉(zhuǎn)換效率,更容易實現(xiàn)模塊的小型化,更耐高溫,目前主要用于高溫、高頻、高效能的大功率元件,如智能電網(wǎng)、交通、新能源汽車、光伏、風電。其中,新能源汽車是SiC功率器件市場的主要增長驅(qū)動因素,主要的應(yīng)用器件有功率控制單元(PCU)、逆變器,DC-DC轉(zhuǎn)換器、車載充電器等。




GaN 與 SiC的競爭

考慮到這些相對優(yōu)勢和劣勢,讓我們逐一考慮各個應(yīng)用程序,并闡明事情可能如何發(fā)展。


電動汽車逆變器和轉(zhuǎn)換器

特斯拉在2017年為其Model 3的車載或牽引逆變器采用SiC,這是該半導(dǎo)體的早期重大勝利。在電動汽車中,牽引逆變器將電池的直流電轉(zhuǎn)換為電機的交流電。逆變器還通過改變交流電的頻率來控制電機的速度。據(jù)新聞報道,如今,梅賽德斯-奔馳和Lucid Motors也在其逆變器中使用SiC,其他電動汽車制造商也計劃在即將推出的車型中使用SiC。SiC器件由Infineon、OnSemi、Rohm、Wolfspeed等供應(yīng)。EV牽引逆變器的功率范圍通常從小型EV的約35kW到100kW到大型車輛的約400kW。

然而,將這場競賽稱為SiC還為時過早。正如我所指出的,要打入這個市場,GaN供應(yīng)商必須提供1,200-V的器件。電動汽車電氣系統(tǒng)現(xiàn)在通常僅在400伏電壓下運行,但保時捷Taycan擁有800伏系統(tǒng),奧迪、現(xiàn)代和起亞的電動汽車也是如此。預(yù)計其他汽車制造商將在未來幾年效仿。(Lucid Air有一個 900-V系統(tǒng)。)我希望在2025年看到第一個商用1,200-V GaN晶體管。這些設(shè)備不僅將用于車輛,還將用于高速公共EV充電器。

GaN可能實現(xiàn)的更高開關(guān)速度將成為EV逆變器的一個強大優(yōu)勢,因為這些開關(guān)采用了所謂的硬開關(guān)技術(shù)。在這里,提高性能的方法是非??焖俚貜拇蜷_切換到關(guān)閉,以最大限度地減少設(shè)備保持高電壓 和通過高電流的時間。

除逆變器外,電動汽車通常還配備車載充電器,可通過將交流電轉(zhuǎn)換為直流電,利用壁(市電)電流為車輛充電。在這里,GaN再次非常有吸引力,原因與使其成為逆變器的理想選擇的原因相同。


電網(wǎng)應(yīng)用

至少在未來十年內(nèi),用于額定電壓為3kV或更高的設(shè)備的超高壓電源轉(zhuǎn)換仍將是SiC的領(lǐng)域。這些應(yīng)用包括有助于穩(wěn)定電網(wǎng)、將交流電轉(zhuǎn)換為直流電并在傳輸級電壓下再次轉(zhuǎn)換回來的系統(tǒng),以及其他用途。


手機、平板電腦和筆記本電腦充電器

從2019年開始,GaN Systems、Innoscience、Navitas、Power Integrations和Transphorm等公司開始銷售基于GaN的壁式充電器。

GaN的高開關(guān)速度及其普遍較低的成本使其成為低功率市場(25至500W)的主導(dǎo)者,在這些市場中,這些因素以及小尺寸和穩(wěn)健的供應(yīng)鏈至關(guān)重要。這些早期的GaN功率轉(zhuǎn)換器具有高達300kHz的開關(guān)頻率和超過92%的效率。他們創(chuàng)造了功率密度記錄,數(shù)字高達每立方英寸30W(1.83W/cmm3)——大約是他們正在更換的硅基充電器密度的兩倍。


太陽能微型逆變器

近年來,太陽能發(fā)電在電網(wǎng)規(guī)模和分布式(家庭)應(yīng)用中都取得了成功。對于每個安裝,都需要一個逆變器將太陽能電池板的直流電轉(zhuǎn)換為交流電,為家庭供電或?qū)㈦娔茚尫诺诫娋W(wǎng)。今天,電網(wǎng)規(guī)模的光伏逆變器是硅 IGBT和SiC MOSFET的領(lǐng)域。但GaN將開始進軍分布式太陽能市場,尤其是。

傳統(tǒng)上,在這些分布式安裝中,所有太陽能電池板都有一個逆變器箱。但越來越多的安裝人員更喜歡這樣的系統(tǒng),其中每個面板都有一個單獨的微型逆變器,并且在為房屋供電或為電網(wǎng)供電之前將交流電組合起來。這樣的設(shè)置意味著系統(tǒng)可以監(jiān)控每個面板的操作,以優(yōu)化整個陣列的性能。

微型逆變器或傳統(tǒng)逆變器系統(tǒng)對現(xiàn)代數(shù)據(jù)中心至關(guān)重要。再加上電池,他們創(chuàng)造了一個不間斷的電源,以防止停電。此外,所有數(shù)據(jù)中心都使用功率因數(shù)校正電路,調(diào)整電源的交流波形以提高效率并消除可能損壞設(shè)備的特性。對于這些,GaN提供了一種低損耗且經(jīng)濟的解決方案,正在慢慢取代硅。


5G和6G基站

GaN的卓越速度和高功率密度將使其能夠贏得并最終主導(dǎo)微波領(lǐng)域的應(yīng)用,尤其是5G和6G無線以及商業(yè)和軍用雷達。這里的主要競爭是硅LDMOS器件陣列,它們更便宜但性能較低。事實上,GaN在4GHz及以上的頻率上沒有真正的競爭對手。

對于5G和6G無線,關(guān)鍵參數(shù)是帶寬,因為它決定了硬件可以有效傳輸多少信息。下一代5G系統(tǒng)將擁有近1GHz的帶寬,可實現(xiàn)超快的視頻和其他應(yīng)用。

使用絕緣體上硅技術(shù)的微波通信系統(tǒng)提供了一種使用高頻硅器件的5G+解決方案,其中每個器件的低輸出功率都通過大量陣列來克服。GaN和硅將在這個領(lǐng)域共存一段時間。特定應(yīng)用程序的贏家將取決于系統(tǒng)架構(gòu)、成本和性能之間的權(quán)衡。


雷達

美國軍方正在部署許多基于GaN電子設(shè)備的地面雷達系統(tǒng)。其中包括由 Northrup-Grumman 為美國海軍陸戰(zhàn)隊建造的地面/空中任務(wù)導(dǎo)向雷達和有源電子掃描陣列雷達。雷神公司的SPY6雷達已交付給美國海軍,并于2022年12月進行了首次海上測試。該系統(tǒng)大大擴展了艦載雷達的范圍和靈敏度。


寬帶隙之戰(zhàn)才剛剛開始

如今,SiC在EV逆變器中占據(jù)主導(dǎo)地位,而且通常在電壓阻斷能力和功率處理能力至關(guān)重要且頻率較低的地方。GaN是高頻性能至關(guān)重要的首選技術(shù),例如5G和6G基站,以及雷達和高頻功率轉(zhuǎn)換應(yīng)用,例如墻上插頭適配器、微型逆變器和電源。

但GaN和SiC之間的拉鋸戰(zhàn)才剛剛開始。無論競爭如何,一個應(yīng)用一個應(yīng)用,一個市場一個市場,我們可以肯定地說,地球環(huán)境將成為贏家。隨著這一技術(shù)更新和復(fù)興的新周期勢不可擋地向前發(fā)展,未來幾年將避免數(shù)十億噸溫室氣體排放。